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1. Introduction r

Based on the Beam-Warming central difference algorithm', of the late sev-
enties and with the increasing power of scientific computers, the early eighties
saw a substantial computational effort 3- ' 6 at analyzing projectile and missile flow-
fields. The early work 3 - 1 focused particular attention on the important Secant-
Ogive-Cylinder-Boattail (SOCBT) projectile configuration for which a substan-
tial body' 6 , 7 , 7 of experimental results had been obtained. The results of an
assessment' s made shortly before the present work was initiated may be summa-
rized as follows. At zero angle of attack or away from the immediate transonic zone
.9 < M < 1.1, the subsonic and supersonic techniques using the thin layer Navier-
Stokes approximation 9 in respective time1 and space marching2 implementations
of Beam and Warming factored implicit numerical methods had been found effective
in flow field predictions and the derived aerodynamic coefficients. In the immediate
transonic regime where aerodynamic coefficients are a highly nonlinear and rapidly
varying function of Mach number, performance had not been as satisfactory. In
the later regime, the variation of coefficients is largely governed' 7 by the sensitive
movements of shocks, aftward with increasing Mach number; and computational
accuracy and numerical stability become of major importance. Intimately relatedto the shocks are precursor expansions which are equally difficult and important to

treat accurately. A final computational detail needing improvement was the ability
to accurately compute flow in the vicinity of contact discontinuities which appear
in streamwise and cross flow separations, for example.

Another emerging computation area was base flow analysis which became an
important research topic for both 8 the impacts on drag and pitching moment. Base
flow computations were performed for projectiles7 and, with more emphasis' ° - 6 ,
on a wind tunnel model tactical missile with centered propulsive jet. The latter
computations provided universally unsatisfactory predictions of base pressure, a
deficiency largely ascribed at the time to inadequate turbulence modeling.

In the same time frame of these early computations, PEDA Corporation was
carrying out research and development to provide advanced computational tools
for viscous flow analyses in complicated geometries. The theme of the research
was accurate, efficient flux difference split implicit upwind schemes 2 0 - 2 5 that did
not require ad hoc smoothing operators and efficient high quality algebraic grid
generation2 6 on domain boundary fitting patch mesh systems.

The flux difference split upwind implicit schemes with coupled well posed char-
acteristic boundary point approximations were known to have superior natural sta-
bility properties while providing sharper capture of flow structures such as shocks,
expansions and contacts. A newly discovered symmetric Gauss-Seidel relaxation
scheme CSCM-_ 2 4'1 5 for the CSCM upwind method 2 -" had been found to be
both more efficient in data storage and handling but, also, to be substantially more
rapidly convergent to steady state.

-0 W , V.-J W. dra



The complementary development, algebraic grid generation in patched mesh
systems, had the fundamentai capability to provide direct control 6'27 of mesh topol-
ogy, spacing and quality without the necessity and numerical complexity of solving
sets of partial differential equations, as was being practiced2 8 in some prominent
lines of development.

Problem Statement

The intent of the presently reported effort was to implement, test and demon-
strate the applicability and effectiveness of the evolving new computational method-
ology in the analysis of problems of interest to US Army research and development.
Based on both theory and numerical experience, the belief was that the new methods
had the potential to improve accuracy, efficiency and productivity in aerodynamic
design analysis.

In the next section we will summarize the substantial effort that has been made
in adapting tools and exploring the numerical solution of two generic transonic
aerodynamics problems - SOCBT and MICOM missile base flow - of direct Army
interest and for which good experimental and computational background exist.

2. Research Accomplished

Over the nominally three year program we have explored the 2-D axisymmetric
problems of the SOCBT forebody and base flow and MICOM missile base flow.
That work has resulted in six meeting papers2 0 - 3 reporting different advances and
understandings obtained in the course of attacking these problems. We have also
studied 3-D flows about the SOCBT at angle of attack. In the latter part of the ,.
program we requested and obtained a six month no cost extension permitting us -.

under other support to further advance our 3-D computational tools - algebraic
grid generation and the CSCM-S algorithm. The latter improved program3 5 has
been employed in the 3-D angle of attack computations for the SOCBT that we %

report on here and elsewhere36 .

Algebraic Grid Generation

The concept of patched meshing in which complex domains are broken up
into many geometrically regular and topologically rectangular subdomains leads
naturally to the use of efficient algebraic techniques for the construction of the in-
dividual mesh patches. To obtain the desired smoothness properties over the global
mesh in the vicinity of patch boundaries, comparatively early in our methods re-
search, a technique that permits specification of point distribution and gradient on
all boundaries had been devised. The technique - termed generalized transfinite
interpolation 6 - can be seen to embed use of a parameterized general cubic poly-
nomial for the coordinate curves. Regularity of the mesh is obtained by employing '_

continuous distributions of the parameters of the curves within judiciously chosen
bounds based on analysis. Stretching functions such as that of Vinokur3 7 are used

2
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to distribute points and blending funct ins are used to distribute parameters of the
curves between lateral boundaries.

A novel feature of the technique was the introduction of the corner singularity
from analysis to govern distribution of points and parameters in the vicinity of
boundary slope singularities. At such points, the method thus obtains the desired
properties of mesh smoothness to the interior.

However, in attempting to apply the generalized transfinite interpolation tech-
nique in a variety of 2-D problems, it became evident the method was too sensitive
to parameter selection among too many options, was confusing and ultimately re-
quired too much artistry to meet the objectives of simplicity and user friendliness
set for the products of the research. Further, the lack of an analytical solution to
corner problems blocked the straightforward extention of the technique to 3-D.

With some reflection it became evident to us early in the present program
that the difficulty lay in trying to accomplish too much in a single step process.
Rather, borrowing the tools of the algebraic technique and redefining the process
in a sequence of simple steps with interactive computer graphics, we could define a
straightforward procedure to meet the desired ends.

The fundamental approach that we employ and which was initially implemented
under other support is in the realm of two boundary methods, in that one pair ofopposite sides of a patch is regarded as prescribed and often includes a portion of
a physical boundary. The other pair of sides is formed of the left and right limiting
members of the family of generalized cubic coordinate curves joining the initially
given two boundaries. In either 2-D or 3-D the general cubic coordinate curve has
the simple form

r = + (r_.. - r)f(u) + g(u) + a2 h(u) (1)
where

f(u) = u2 (3 - 2u)

g(u) = u(1 - U)2

h(u) -u(u -21)

Equation (1) is a hermite interpolation of value (r) and gradient (!z) on the two
boundaries and is parameterized in terms of u which varies from zero to unity. The
scalings of a_ and a2 influence the shape (curvature) of the curve between any pair
of end points. The specification of a discrete set of u values using a generalized
distribution function such as that of reference 37 defines the nodal intersections
with the other family of coordinate curves.

In our implementation, the left and right limiting (lateral bounding) coordinate
curves are developed interactively on a graphics terminal or workstation to have
the desired configurations. The parameters of these lateral bounding curves are
then blended with polynomial weighting functions to describe the general cubic
coordinate curve over the intervening, also discretized, interval.

3 P.

'0



The lateral patch boundaries are essentially control devices that specify shape
and distribution to surrounding regions. As such they are placed where needed -
at breaks in body surface geometry and as terminators or transition guides from
regions of strong shape variation to regions of very regular mesh. In fact the mesh
generation problem, particularly for geometries with any substantial complexity, is
a problem of multiple length scales. The purpose of multiple patching is to isolate
regions of comparable scales and on which subdomains the solution is comparatively
regular and can be conveniently fit by simple functions.

Once a primary grid is generated by the technique described above it can be
interactively improved by modifying parameter blending and point distribution in-
cluding point redistribution along the alternate family of coordinate lines implicitly
defined by the nodes on the cubic coordinate curves. The latter operation is in
the spirit, if not the detailed implementation, of a two step generalized transfinite
interpolation.

Another secondary operation that we employ is the modification of coordinate
lines in the vicinity of a boundary to smoothly enforce local normality. The latter
operation like all the procedures has been programmed as a convenient tool requiring
minimal input to apply at a boundary. Finally, a parameterized tension spline27

that provides an analytical description of a curve amongst discrete data is a tool that
has proved useful in the latter operation, in effecting redistribution of points along
coordinate curves of either family and for fitting numerically specified boundary
data. .

Under ARO support we have explored the application of the simplified mul- ,.

tistep technique to the projectile and missile problems we have attacked computa-
tionally. In the course of the work and particularly over the first two years, we have
progressively identified ways of improving the organization of the tools to provide
better user control of mesh quality and enhanced productivity. The tools and orga-
nization of patched grid generation in five algebraic steps are described in references
33 and 34. The five step procedure (FASTWO in 2-D) that has evolved is

Step 1. Boundary definition for the global computational domain
Step 2. Wireframe block (patch) decomposition of the computational domain
Step 3. Trial grid generation
Step 4. Grid distribution adjustments 7-".

Step 5. Grid normalization at boundaries.

Over the past three years, the work has been very effectively employed in other
Army R & D programs - notably grids for coupled external/cavity flow simula-
tions in the transonic (AOA aircraft) 39 and hypersonic (HEDI missile) 4 ° '4 ' speed
regimes for USA-SDC. The wcrk is presently finding application with USA-BRL in
an analysis for sabot separation.

Many examples of grids generated with the technique are given in the references "

to our work. Here, for illustration, we show in Figures la, 1b, 1c and id the

4

'N.14 "

V !J



wire frame domain decomposition for the SOCBT problem and three views of the
resulting grid.

SOCBT Flows with the CSCM-S Algorithm

The technique that we have applied under the contract is a new single level 61

operationally explicit but effectively implicit algorithm2 4 for gasdynamics. The al-
gorithm is particularly appropriate for multiple patch mesh systems because through
the interior boundary treatment 42 each solution sweep operation on any patch can
be decoupled from any other. Thus the method is not only very storage efficient
and simple to program including the coupling at patch boundaries; but, also, can
make excellent use of parallel computing in several straightforward ways.

Previously the Beam-Warming factored implicit algorithm' with the Baldwin-

Lomax thin layer viscous approximation'" has provided the basis for two similar
space marching (PNS) procedures' 43 for the compressible Navier-Stokes equations.
These PNS methods which are highly efficient - requiring half the data storage and
a small fraction of the computer time of two level time dependent methods - have
proven effective for flows 10 with favorable streamwise pressure gradient or with rela-
tively small adverse pressure gradients. However, in the presence of a strong adverse
pressure gradient such as occurs in a wing or fin root regions the contemporary PNS
methods suffer numerical stability problems and may infer streamwise separation
even where separation doesn't occur 4 . In such unseparated (perhaps weakly sep-
arated) regions, numerical stability has been maintained at the price of employing
large amounts of artificial viscosity with a resulting loss in predictive accuracy and
knowledge of the actual state of the flow. Where strong streamwise separation oc-
curs the methods are unstable and cannot proceed. Streamwise separation becomes
a likely occurrence in fin roots and on deflected control surfaces and base regions.
Thus a more general technique is needed that is inherently stable for all types of
upstream influence. At a minimum the mixed elliptic-hyperbolic problem requires
global iteration, preferably with type dependent differencing. More background on
this problem area is given in reference 24.

Universal Single Level Scheme CSCM-S

The CSCM flux difference eigenvector split upwind implicit method 2 0- 2 3 for
the inviscid terms of the compressible Navier-Stokes equations provides the natural
basis for an unconditionally stable space marching technique through regions of
subsonic and streamwise separated flow. In such regions the split method can be
likened to stable marching of each scalar characteristic wave system in the direction
of its associated eigenvalue (simple wave velocity). In supersonic flow, where all
eigenvalues have the same sign, the method automatically becomes equivalent to the
referenced PNS techniques based on the Beam-Warming factored implicit method
with the Baldwin-Lomax thin layer viscous approximation.

Compared to contemporary central difference methods, the CSCM character-
istics based upwind difference approximation with its inherent numerical st-bility

5.
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leads to greatly reduced oscillation and greater accuracy in the presence of captured
discontinuities such as shocks, contacts and physical or computational boundaries.
The method has well validated heat transfer capability 4s - 47 . The correct math-
ematical domains of dependence that correspond with physical directions of wave
propagation are coupled with well posed characteristic boundary approximations 2 3

naturally consistent with the interior point scheme. The result is a faster sorting out
of transient disturbances and substantially more rapid convergence to the steady
state. The splitting and the associated time dependent implicit method have been
described in detail in references (20) and (23) respectively for quasi 1-D and 2-D
planar or axisymmetric flow.

In the following, we will sketch the differences between the time dep-ndent
method and the space marching technique which we have designated CSCM-S. The
discussion will begin with the quasi 1-D inviscid formulation, then give additional
details entering into multidimensional inviscid and thin layer viscous procedures
and present some 2-D axisymmetric solutions for the SOCBT. Lastly we sketch a
3-D implicit method of planes algorithm and give some results for the SOCBT at
angle of attack.

Quasi 1-D Formulation

The general jth interior point difference equations for the time dependent
CSCM upwind implicit method for the inviscid advection terms is

+n n 2
(I+A+V+A-A)bqi =-A+Aq)_ -AAq) (2)

where V and A are backward and forward spatial difference operators. Here q is
* the conservative dependent variable vector and F is the associated flux vector. In

the notation the interval averaged matrices between node points j and j + 1 are
indexed j. For simplicity, the right hand side of equation (2) is written for the first
order method. Higher order methods in space are given with results in references
20, 23 and 38. In equation (2) the CSCM flux difference splitting is

(,X+ + -)Aq AF + + AF- = AF (3a)

with
A~=( TP7 M ')EA~A(3b)

and

2 (1 sgn(A)) (3c)

exhibiting the similarity transformation that diagonalizes the constructed °2 3 flux.

difference Jacobian A. Here A is a diagonal matrix of the interval averaged eigen-
values that through the truth function diagonal matrices I± make the decisions

about directions of characteristic wave propagation and whether or not to send

6
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signal to the solution point. Thus in equation (2) the piece of the flux difference
splitting X+ Aq)il represents the convection of characteristic wave contributions
in the positive coordinate direction from grid point j - 1 to solution point j and A,
in the negative direction from j + 1 to j. As the result of incorporating multiplica-
tively the (local) time step (for pseudo time relaxation) and the spatial (divided)
differences in the matrices, the numerical eigenvalues are Courant numbers for the
characteristic waves whose speeds are u, u + c and u - c, with c the sound speed.

Central to its accurate shock capturing capability, the CSCM conservative flux
difference splitting has the Roe 48 "property U" embodied in equation 3a.

With bq = q1+1 - q1, equation (2) defines a two level linearized coupled block
matrix implicit scheme that can be solved by a block tridiagonal procedure. In
reference (23) a new (DDADI) approximately factored alternating sweep bidiagonal
solution procedure for equation (2) is presented that is shown to be very robust
and is operationally explicit, i.e. requires only a decoupled sequence of local block
matrix inversions rather than the solution of the coupled set. For the forward sweep
the bidiagonal solution procedure can be written

(I + A A-)6q* = RHS + A+bq'i_,  (4)

For the linear problem, i.e. constant coefficient case of stability analysis, equation
(4) is equivalent to the single level space marching procedure

(1 + .XA)bq*. = X+q*j-l - A+q~ ~ 5

Nonlinearity enters in the single level space marching form (5) in that at each step of

the forward sweep the matrices A+ are averaged between q*'-I and q rather than
homogeneously at the old iteration level n. Similarly, a companion backward space
marching sweep that is symmetric to equation (5) and that is intimately related to
the backward sweep of the alternating bidiagonal algorithm of reference (23) is

(I+ A+ - A)6qi = -. A+Aq*)i_j +kq!- - ,n + 1 (6)

The method given by equations (5) and (6) is von Neumann unconditionally sta-
ble for the scalar wave equation. The analysis shows the significance of DDADI
approximate factorization in rendering both the forward and backward sweeps sep-
arately stable regardless of eigenvalue sign. Consequently as the local Courant
number becomes very large, the robust method becomes a very effective (symmetric
Gauss-Seidel) relaxation scheme for the steady equations, a fact which substantially
contributes to the very fast performance that will be demonstrated.

At a right computational boundary on the forward sweep we solve the charac-
teristic boundary point approximation2 1 ,2 3

+,X+" b* ~+- q A+qy (7)(A+ +A+)5q* N-=Aq N _fl

N N-i (7)
7
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q = q * and at a left, on the backward sweep

-~ - n n + (8
(A- - A-)6qi = A-q 1 - Aq 2 (8)

Following the solution of equations (7) and (8) the conservative state vector is iter-
atively corrected 2 1' 23 to maintain the accuracy of prescribed boundary conditions
while not disrupting the representation of the computed characteristic variables run-
ning to the boundary from the interior. Analysis of a model system with upwind
differenced scalar equations and coupled boundary conditions was related to the
linearized bidiagonal scheme23 by Oliger and Lombard 40 ; the analysis also strongly
supports the numerically confirmed robust stability of the present nonlinear method
for gasdynamics. A useful result of reference 49 that simplifies the procedure of ref-
erence 23 is that on the forward sweep there is no need for a predictor step at the
left boundary J = 1; thus, the solution sweep begins at J = 2. Similarly, the
backward sweep begins at J = N - 1.

With the updating at each step, where in equation (6) bqi = q' - q3 , it is
clear that the symmetric pair of equations (5) and (6) serve to advance the solution
two pseudo time (iteration) levels; whereas, the linear alternating bidiagonal sweep
algorithm of reference (23) advances the solution only one level. To maintain con-
servation to a very high degree, in single sweep marching in supersonic zones we
iterate (at least) once locally at each space marching step. The local iteration serves
to make the eigenvectors in the coefficient matrices consistent with the advanced r
state and thus provides improved accuracy for the nonlinear system. It appears
effective to do this inner iteration everywhere, i.e. in both subsonic and supersonic
regions, as the number of global iteration steps to convergence with two inner iter-
ations has been found reduced by a factor of three to four. Since the computational
work per two steps is about the same for the single level and two level schemes, and
beyond the fact that one saves a level of storage in the space marching algorithm,
the question arises: Can one get solutions in less computational work through faster
convergence with the nonlinear space marching algorithm?

With the globally iterative nonlinear space marching formulation, early

experience2 4 in two quasi 1-D nozzle problems with mixed supersonic-subsonic zones
is that solutions are obtained in roughly an order of magnitude fewer iteration steps
than had been required with the previously fast pseudo time dependent technique
and block tridiagonal solving.

Two Dimensional Formulation

For two dimensional flow, assuming a marching coordinate , inviscid terms

B+V. + B5A', (9a)

and
-B+ Aq)k_ - B-Aq)k (9b)

8
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are added to the left and right hand sides respectively of both the forward and back-
ward sweep equations (5) and (6). For viscous flow, second centrally differenced,
thin layer viscous terms are also added in the Y7 direction as is conventionally prac-
ticed, e.g. Steger5 ° . With the terms for the Y7 cross marching coordinate direction,
the technique now becomes an implicit method of lines. Along each Y7 coordinate
line, one can solve the equations coupled with a block tridiagonal procedure. Alter-
natively, a further DDADI bidiagonal approximate factorization can be employed in
the t7 direction and solved either linearly as in reference (23) or nonlinearly as here
in the C direction. As shown in the quasi 2-D numerical experiments of reference
(23), DDADI bidiagonal approximate factorization is stable for viscous as well as
inviscil terms. Finally in reference (23) there is a relevant discussion of the reduced
approximate factorization error that attends using DDADI in one or more space
directions.

SOCBT Axisymmetric Flow

In the course of the computational analyses 29 we simulated viscous transonic
flows at Mach numbers .9, .94, .96, .98 and 1.1. Various approximations 29 of
base/wake treatment with respect to the free flying projectile and wind tunnel
sting mount were undertaken. These can be seen in the Mach contour plots of Fig-
ures 2a and 2b. In supersonic flow, for the case of the continued boattail sans base
flow/wake region, Figure 2a, one loses the detail of a corner expansion followed by
a lip shock that occurs with a backward step, Figure 2b. For comparison, Cp plots
for the two cases are shown in Figures 3a and 3b. The low pressure of the base
expansion is lost with the extended sting approximation.

For the high subsonic regime, Figures 4a, 4b, 4c and 4d, the base pressures ..

can be seen to be slightly underpredicted for even the sting mounted case, Figure |
4c, vis a vis the free flight geometry, Figure 4d. In both supersonic and subsonic
flows, Figures 3a and 4b, the upwind differencing scheme produced qualitatively
sharper responses to flow structures and in better agreement with experiment than
the earlier computations with central differencing, with the attendant smoothing.

More details concerning the experiment and computational results can be found
in references 17, 5 and 29.

Three Dimensional Method of Planes Algorithm 76

In reference 24 we presented a symbolic algebra for DDADI approximate fac-
torization and derived single level relaxation schemes. The algebra is based on the
implicit difference stencil of the implicit method. Here we use the approach to
derive the symmetric Gauss-Seidel implicit method of planes relaxation algorithm
employed in the present work.

The unfactored three dimensional linearized implicit method can be represented
9 N-
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by the symbolic matrix expression

B-

C-
-A +  D A-

_C+

_B+

On the block diagonal the matrix D I + A + - A- + B + - B- + C + - C-. A
once DDADI approximate factorization in the t7 coordinate direction leads to the

expression

B- B-

C- C-
-A +  D D - 1 D A--C +  _C+

-B +  -B +

By analogy with the derivation of the single level scheme for quasi 1-D flow from
DDADI bidiagonal approximate factorization, we identify the above expression with
the alternate space marching implicit method of planes algorithm

Forward Sweep[ -
-c+ D C- q'=RHS[ q+1 q!

-B+

Backward Sweep

B- ]62 1 q +

-C +  D C- RHS[ q! ' q+2
-- +1 q + 1-B +

In the planes the coupled block matrix problem can be further simplified by the
approximate factorization

'-C + , D, C- ] D-1 [-B + D B- J]q = RHS (lOa)

which leads directly to the block tridiagonal solution sequence

[-C + D C ]6 q*= RHS (10b)

[-B + D B- ]6q = D6q* (10c)
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SOCBT Flow at Angle of Attack

Here the 3-D CSCM-S method has been applied to predict the aerodynamic
flow field of a projectile configuration flying at Mach number 0.96, 0.98, and 1.1 at
40 angle of attack, and Mach number 0.95 at 20 angle of attack. The predictions

show agreement in the quantitative and qualitative nature of the flow field, including
the recirculatory base flow, and the comparisons with experimental data and other
numerical results. Pressure measurements for this projectile supported by a base-
mounted sting were made by Kayser and Whiton' 7 . The present calculations were
done with a grid which contained 128 longitudinal, 56 normal, and 31 circumferential
points. Due to the symmetry plane imposed by the angle of attack of the mean p.

flow and the axisymmetric geometry of the projectile, only half of the domain was
simulated. Figure 5 shows the 99 by 31 grid configuration on the projectile surface.
The 3-D grid was generated by rotating the 2-D grid of Figures 1 about the projectile
axis of symmetry.

For a free stream Mach number of 0.96 and 40 angle of attack, Figure 6a shows
the computed distribution of the surface pressure coefficient in the windward and
leeward planes together with the square and circle symbols showing the experimen-
tal measurements. The expansions and recompressions near the ogive-cylinder and
cylinder-boattail junctions are well captured by the simulations. The agreement
with the experimental data is better on the ogive and cylinder surfaces than on the
boattail surface.

Figure 6b shows the comparison obtained by Sahu*S for this projectile config-
uration. As in the case of the 2-D simulations, the upwind method is in generally
better qualitative agreement with experiment in following flow structure details
than the central difference methods. A Mach contour plot for the solution of Figure
6a is shown in Figure 7.

Figure 8a shows the CSCM-S computed distribution of the surface pressure
coefficient in the leeward plane with a free stream Mach number 0.95 and 20 angle
of attack. Figure 8b shows three different predictions obtained by Nietubicz et
al5 ' with different numerical methods for a projectile with a similar configuration
and a 7.5' boattail angle. The CSCM predictions agree better with the VSYM3D
predictions obtained with the finer grid.

Additional computational results for 3-D angle of attack solutions will be pre-

sented in reference 36.

The present initial results show the predictive computational aerodynamic ca-
pabilities of the 3-D CSCM method for projectiles at transonic velocities. As in
cases run at higher Mach numbers, the 3-D code predictions are in quite good
agreement with results from the well validated 2-D CSCM codes. This efficient
numerical method requires about one hour of Cray-XMP computer time for each
three-dimensional simulation, while the present results have been verified by using
an additional hour per calculation. The method provides a promising computational
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capability to simulate the full flow field around projectiles, including the separated
base flow.

MICOM Missile Base Flow

Various aspects of computational technique were explored in the context of the
MICOM tactical missile model base flow experiment' 6 . The axisymmetric problem
was tested in a Mach 1.4 freestream. The model featured a broad flat base five
times the exit diameter of an axis centered cold propulsive jet emitted from the
base. The jet exit Mach number was 2.7 and the flow was underexpanded with
normal pressure ratio of 2.15 relative to freestream.

We were particularly interested to study the effects of mesh topology and reso-
lution on the prediction of base pressure, which was available from the experiment
and had not previously been successfully simulated. All computational experiments
were performed with the same classical mixing length wake model3 ° .

Figures 9a, 9b, 9c, and 9d show four meshes that were studied - respectively
termed double wraparound, Cartesian step and independent multiple patched, the
latter without and with computed flow structure adaptive grid redistribution 3 . Fig-
ures 10a, 10b, 10c, and 10d show the corresponding Mach contour plots. Comparing
the grid pictures and the Mach contour plots one can clearly see the correlation be-
tween good grid resolution and flow structure sharpness. The classical composite
meshing techniques, Figures 9a and 9b, waste mesh points in excessive refinement
where, through the topology, zones of boundary layer mesh propagate out into the
computational domain. The multiple independent patched mesh strategy, with sin-
gle mesh cell overlap to exchange data by interpolation42 , permits better balanced
resolution and use of mesh resources. The latter has small wraparound patches
communicating the boundary layers around the sharp corners at the base.

Finally, Figures 11a and 11b show comparisons of computed base pressure
against the experimental pressure tap data. Figure 11a shows that the double
wraparound grid provides a good average base pressure prediction, but a wave
structure due to cooperative vortex jet action in the separated flow region is an
artifact of the calculation. The overall solution is substantially improved vis a vis
earlier attempts by other workers with central difference methods and Cartesian
step grids, Figure 12 from reference 15. Our results with Cartesian step grid is also
somewhat less satisfactory than with the double wraparound grid.

Figure 11b shows that the independent multiple grid solution without adap-

tation performs qualitatively similar to the double wraparound grid in terms of
the vortex action. However, the same topology with flow structure adaptive grid
point redistribution provides the additional refinement and, likely also, alignment
features to permit a subtle circulation mechanism to be set up in the modified base
separation vortex pattern; and a correct flat pressure distribution results. Thus
here the flow physics and associated qualitative solution structure are found to be
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strongly influenced by grid topology and resolution. More details are available in V
references 30 and 32.

3. Publications

Two meeting papers in the area of algebraic grid generation have resulted, refer-
ence 33 and the paper in preparation: Luh, R.C.-C. and Lombard, C.K.: "FASTWO
- A 2-D Interactive Algebraic Grid Generator," AIAA-88-0516.

Two meeting papers in the area of SOCBT flow analyses with the 2-D and 3-D
CSCM-S codes have resulted, reference 29 and the paper in preparation: Bardina, .

Jorge, Lombard, C.K. and Luh, R.C.-C.: "CSCM Three Dimensional Navier-Stokes
Computational Aerodynamics for a Projectile Configuration at Transonic Veloci-
ties", abstract submitted for AIAA 6th Applied Aerodynamics Conference, June 0
1988.

Three meeting papers, references 30-32, have resulted from the computational
research in the MICOM propulsion base flow problem.

4. Scientific Personnel

Dr. C.K. Lombard, Principal Investigator
Dr. Jorge Bardina
Dr. Raymond C.-C. Luh
Dr. Ethiraj Venkatapathy
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Figure 6 Cp Plots for SOCBT at Mach 0.96, Angle of Attack 40
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Figure 8 Cp Plots for SOCBT at Mach 0.95, Angle of Attack 20
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Figure 9 Grids for MICUM Base Flow Study
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Figure 11 Base Pressure Plots for MICOM Base Flow Computed with CSCM-S
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